Image Processing/Image Binarization
[구현(c)/2008] Efficient Implementation of Local Adaptive Thresholding Techniques Using Integral Images
neverabandon
2020. 5. 21. 08:39
link: https://staffhome.ecm.uwa.edu.au/~00082689/papers/Shafait-efficient-binarization-SPIE08.pdf
#define OBJECT 255
#define BACKGROUND 0
#define SAUVOLA_WINDOW_SIZE 31
#define SAUVOLA_K_VAL 0.85f
#define SAUVOLA_R_VAL 128
#define FIND_MAX(a,b) (((a) > (b)) ? (a) : (b))
#define FIND_MIN(a,b) (((a) < (b)) ? (a) : (b))
#define MAKE_INTEGRAL_IMAGE(x, y) (integralImage[(y)*imageWidth+(x)])
#define MAKE_INTEGRAL_SQUARE_IMAGE(x, y) (integralSquareImage[(y)*imageWidth+(x)])
void RunIntegralSauvola(unsigned char* srcImage, unsigned char* dstImage, const int imageWidth, const int imageHeight)
{
int halfWindow = SAUVOLA_WINDOW_SIZE>>1;
int differece, squareDifference;
std::vector<int> integralImage(imageWidth*imageHeight);
std::vector<int> integralSquareImage(imageWidth*imageHeight);
integralImage[0] = srcImage[0];
for(int x=1; x<imageWidth; ++x)
{
int pixelVal = srcImage[x];
integralImage[x] = integralImage[x-1]+pixelVal;
integralSquareImage[x] = integralSquareImage[x-1]+pixelVal*pixelVal;
}
for(int y=1; y<imageHeight; ++y)
{
int lineSum =0, lineSquareSum = 0;
for(int x=0; x<imageWidth; ++x)
{
int pixelVal = srcImage[y*imageWidth+x];
lineSum += pixelVal;
lineSquareSum += pixelVal*pixelVal;
__int64 a = integralSquareImage[(y-1)*imageWidth+x];
__int64 b = lineSquareSum;
integralImage[y*imageWidth+x] = integralImage[(y-1)*imageWidth+x] + lineSum;
integralSquareImage[y*imageWidth+x] = integralSquareImage[(y-1)*imageWidth+x] + lineSquareSum;
}
}
for(int j=0; j<imageHeight; j++)
{
for(int i=0; i<imageWidth; i++)
{
int xMin = FIND_MAX(0, i-halfWindow);
int yMin = FIND_MAX(0, j-halfWindow);
int xMax = FIND_MIN(imageWidth-1, i+halfWindow);
int yMax = FIND_MIN(imageHeight-1, j+halfWindow);
int area = (xMax-xMin+1)*(yMax-yMin+1);
if(!xMin && !yMin)
{
differece = MAKE_INTEGRAL_IMAGE(xMax, yMax);
squareDifference = MAKE_INTEGRAL_SQUARE_IMAGE(xMax, yMax);
}
else if(!xMin && yMin)
{
differece = MAKE_INTEGRAL_IMAGE(xMax, yMax) - MAKE_INTEGRAL_IMAGE(xMax, yMin-1);
squareDifference = MAKE_INTEGRAL_SQUARE_IMAGE(xMax, yMax) - MAKE_INTEGRAL_SQUARE_IMAGE(xMax, yMin-1);
}
else if(xMin && !yMin)
{
differece = MAKE_INTEGRAL_IMAGE(xMax, yMax) - MAKE_INTEGRAL_IMAGE(xMin-1, yMax);
squareDifference = MAKE_INTEGRAL_SQUARE_IMAGE(xMax, yMax) - MAKE_INTEGRAL_SQUARE_IMAGE(xMin-1, yMax);
}
else
{
int diagonalSum1 = MAKE_INTEGRAL_IMAGE(xMax, yMax) + MAKE_INTEGRAL_IMAGE(xMin-1, yMin-1);
int diagonalSum2 = MAKE_INTEGRAL_IMAGE(xMax, yMin-1) + MAKE_INTEGRAL_IMAGE(xMin-1, yMax);
differece = diagonalSum1 - diagonalSum2;
int squareDiagonalSum1 = MAKE_INTEGRAL_SQUARE_IMAGE(xMax, yMax) + MAKE_INTEGRAL_SQUARE_IMAGE(xMin-1, yMin-1);
int squareiDiagonalSum2 = MAKE_INTEGRAL_SQUARE_IMAGE(xMax, yMin-1) + MAKE_INTEGRAL_SQUARE_IMAGE(xMin-1, yMax);
squareDifference = squareDiagonalSum1 - squareiDiagonalSum2;
}
float mean = (float)(differece)/(float)(area);
float a = ( squareDifference-(float)(differece)*(float)(differece) / (float)(area) ) / (float)(area-1);
float b_mean = differece / (float)area;
float b = squareDifference / (float)area - b_mean * b_mean;
if( abs( a - b ) > 0.00001 )
{
int a = 0;
}
float stdDev = sqrt( ( squareDifference-(float)(differece)*(float)(differece) / (float)(area) ) / (float)(area-1) );
int findThreshold = (int)(( mean * ( 1.0f + SAUVOLA_K_VAL*( (stdDev/SAUVOLA_R_VAL) - 1.0f) ) ));
dstImage[j*imageWidth+i] = ( ( srcImage[j*imageWidth+i] > findThreshold ) ? OBJECT : BACKGROUND );
}
}
}