Others/Information

Image Classification Paper List(1998~2021)

neverabandon 2021. 6. 30. 17:56
  • Image Classificaiton Task와 관련하여 1998년부터 2021년까지 제안된 다양한 딥러닝 기반 논문들에 대해 Years 별로 목록를 만들어봄. 
  • Network Name은 저자가 특별히 칭한 경우에는 약어로, 그렇지 않은 경우에는 Full Name으로 표기함. 또한, 논문에서 따로 명시를 하지 않은 경우에는 실험에 사용된 Network Name으로 표기함.  
  • 논문들은 https://archive.org/ 를 기준으로 정리했으며, 제출년도가 동일한 논문들은 제출날짜 별로 따로 정렬하지 않았음. 또한, 논문이 여러 버전을 가지고 있는 경우에는 최초에 제출된 버전을 기준으로 제출년도를 기입함. 
  • archive로 검색이 안되는 논문들의 경우 검색 가능한 해당 논문의 Link를 기입함.   
Years Network Name Title Link
1998 LeNet-5 Gradient-based learning applied to document
recognition
http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf
2012 AlexNet ImageNet Classification with Deep Convolutional Neural Networks https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
2013 ZFNet Visualizing and Understanding Convolutional
Networks
https://arxiv.org/abs/1311.2901v3
2013 NIN Network In Network https://arxiv.org/abs/1312.4400
2014 VGGNet Very Deep Convolutional Networks for
Large-Scale Image Recognition
https://arxiv.org/abs/1409.1556
2014 GoogLeNet
(Inception v1)
Going deeper with convolutions https://arxiv.org/abs/1409.4842
2015 GoogLeNet
(Inception v2~v3)
Rethinking the inception architecture for
computer vision
https://arxiv.org/abs/1512.00567
2015 ResNet Deep residual learning for image recognition https://arxiv.org/abs/1512.03385
2015 pre-activation 
ResNet
Delving Deep into Rectifiers: Surpassing
Human-Level Performance on ImageNet
Classification
https://arxiv.org/abs/1502.01852
2016 GoogLeNet
(Inception v4,
Inception-ResNet)
Inception-v4, Inception-ResNet and the Impact
of Residual Connections on Learning
https://arxiv.org/abs/1602.07261
2016 WRN Wide Residual Networks https://arxiv.org/abs/1605.07146
2016 SDR Deep Networks with Stochastic Depth https://arxiv.org/abs/1603.09382
2016 RiR Resnet in Resnet: Generalizing Residual
Architectures
https://arxiv.org/abs/1603.08029
2016 SqueezeNet SqueezeNet: AlexNet-level accuracy with 50x
fewer parameters and <0.5MB model size
https://arxiv.org/abs/1602.07360
2016 DenseNet Densely Connected Convolutional Networks https://arxiv.org/abs/1608.06993
2016 Xception Xception: Deep Learning with Depthwise
Separable Convolutions
https://arxiv.org/abs/1610.02357
2016 ResNeXt Aggregated Residual Transformations for Deep
Neural Networks
https://arxiv.org/abs/1611.05431
2016 PolyNet PolyNet: A Pursuit of Structural Diversity in Very
Deep Networks
https://arxiv.org/abs/1611.05725
2016 PyramidNet Deep Pyramidal Residual Networks https://arxiv.org/abs/1610.02915v4
2016 RoR Residual Networks of Residual Networks:
Multilevel Residual Networks
https://arxiv.org/abs/1608.02908
2016 FractalNet FractalNet: Ultra-Deep Neural Networks without
Residuals
https://arxiv.org/abs/1605.07648
2016 DMRNet Deep Convolutional Neural Networks with
Merge-and-Run Mappings
https://arxiv.org/abs/1611.07718
2017 ShuffleNet(v1) ShuffleNet: An Extremely Efficient Convolutional
Neural Network for Mobile Devices
https://arxiv.org/abs/1707.01083
2017 IGCNets(IGCV1) Interleaved Group Convolutions for Deep Neural Networks https://arxiv.org/abs/1707.02725
2017 MSDNet Multi-Scale Dense Networks for Resource
Efficient Image Classification
https://arxiv.org/abs/1703.09844
2017 PNASNet Progressive Neural Architecture Search https://arxiv.org/abs/1712.00559v3
2017 Residual Attention
Network
Residual Attention Network for Image
Classification
https://arxiv.org/abs/1704.06904
2017 DPN Dual Path Networks https://arxiv.org/abs/1707.01629
2017 SENet Squeeze-and-Excitation Networks https://arxiv.org/abs/1709.01507
2017 CondenseNet CondenseNet: An Efficient DenseNet using
Learned Group Convolutions
https://arxiv.org/abs/1711.09224
2017 NASNet Learning Transferable Architectures for Scalable 
Image Recognition
https://arxiv.org/abs/1707.07012
2017 MobileNet v1 MobileNets: Efficient Convolutional Neural 
Networks for Mobile Vision Applications
https://arxiv.org/abs/1704.04861
2018 ShuffleNet(v2) ShuffleNet V2: Practical Guidelines for Efficient 
CNN Architecture Design
https://arxiv.org/abs/1807.11164
2018 AmoebaNet Regularized Evolution for Image Classifier
Architecture Search
https://arxiv.org/abs/1802.01548v7
2018 MnasNet MnasNet: Platform-Aware Neural Architecture 
Search for Mobile
https://arxiv.org/abs/1807.11626
2018 IGCNets(IGCV2) IGCV2: Interleaved Structured Sparse
Convolutional Neural Networks
https://arxiv.org/abs/1804.06202
2018 IGCNets(IGCV3) IGCV3: Interleaved Low-Rank Group Convolutions for Efficient Deep Neural Networks https://arxiv.org/abs/1806.00178
2018 MobileNet v2 MobileNetV2: Inverted Residuals and Linear
Bottlenecks
https://arxiv.org/abs/1801.04381
2018 Adversarial Inception v3,
Ensemble Adversarial
Inception ResNet v2  
Adversarial Attacks and Defences Competition https://arxiv.org/abs/1804.00097
2018 Deep Layer 
Aggregation
Deep Layer Aggregation https://arxiv.org/abs/1707.06484
2018 FBNet FBNet: Hardware-Aware Efficient ConvNet Design via Differentiable Neural Architecture Search https://arxiv.org/abs/1812.03443
2018 Instagram 
ResNeXt WSL
Exploring the Limits of Weakly Supervised
Pretraining
https://arxiv.org/abs/1805.00932
2018 ResNet-D Bag of Tricks for Image Classification with
Convolutional Neural Networks
https://arxiv.org/abs/1812.01187
2019 SSL ResNet,
SSL ResNeXT,
SWSL ResNet,
SWSL ResNeXt  
Billion-scale semi-supervised learning for image
classification
https://arxiv.org/abs/1905.00546
2019 SPNASNet Single-Path NAS: Designing Hardware-Efficient
ConvNets in less than 4 Hours
https://arxiv.org/abs/1904.02877
2019 SKNets Selective Kernel Networks https://arxiv.org/abs/1903.06586
2019 Res2Net, Res2NeXt Res2Net: A New Multi-scale Backbone 
Architecture
https://arxiv.org/abs/1904.01169
2019 Noisy Student Self-training with Noisy Student improves
ImageNet classification
https://arxiv.org/abs/1911.04252
2019 MixNet MixConv: Mixed Depthwise Convolutional Kernels https://arxiv.org/abs/1907.09595
2019 MobileNet v3 Searching for MobileNetV3 https://arxiv.org/abs/1905.02244
2019 FishNet FishNet: A Versatile Backbone for Image, Region, and Pixel Level Prediction https://arxiv.org/abs/1901.03495
2019 GhostNet GhostNet: More Features from Cheap Operations https://arxiv.org/abs/1911.11907
2019 CSPNet CSPNet: A New Backbone that can Enhance
Learning Capability of CNN
https://arxiv.org/abs/1911.11929
2019 EfficientNet EfficientNet: Rethinking Model Scaling for 
Convolutional Neural Networks
https://arxiv.org/abs/1905.11946
2019 BiT Big Transfer (BiT): General Visual Representation
Learning
https://arxiv.org/abs/1912.11370
2019 ECA-Net ECA-Net: Efficient Channel Attention for Deep
Convolutional Neural Networks
https://arxiv.org/abs/1910.03151
2019 VoVNet An Energy and GPU-Computation Efficient
Backbone Network for Real-Time Object
Detection
https://arxiv.org/abs/1904.09730
2019 HRNet High-Resolution Representations for Labeling 
Pixels and Regions
https://arxiv.org/abs/1904.04514
2020 RegNet Designing Network Design Spaces https://arxiv.org/abs/2003.13678
2020 ResNeSt ResNeSt: Split-Attention Networks https://arxiv.org/abs/2004.08955
2020 ReXNet Rethinking Channel Dimensions for Efficient
Model Design
https://arxiv.org/abs/2007.00992
2020 TResNet TResNet: High Performance GPU-Dedicated
Architecture
https://arxiv.org/abs/2003.13630
2020 iGPT Generative Pretraining from Pixels https://cdn.openai.com/papers/Generative_Pretraining_from_Pixels_V2.pdf
2020 ViT An Image is Worth 16x16 Words: Transformers
for Image Recognition at Scale
https://arxiv.org/abs/2010.11929
2020 DeiT Training data-efficient image transformers &
distillation through attention
https://arxiv.org/abs/2012.12877
2021 MLP-Mixer MLP-Mixer: An all-MLP Architecture for Vision https://arxiv.org/abs/2105.01601
2021 Swin Transformer Swin Transformer: Hierarchical Vision Transformer using Shifted Windows https://arxiv.org/abs/2103.14030
2021 CSWin Transformer CSWin Transformer: A General Vision
Transformer Backbone with Cross-Shaped
Windows
https://arxiv.org/abs/2107.00652
2021 ViT_P, ViT_C Early Convolutions Help Transformers See Better https://arxiv.org/abs/2106.14881
2021 CoAtNets CoAtNet: Marrying Convolution and Attention for All Data Sizes https://arxiv.org/abs/2106.04803
2021 ViTs-SAM When Vision Transformers Outperform ResNets
without Pretraining or Strong Data Augmentations
https://arxiv.org/abs/2106.01548
2021 gMLP Pay Attention to MLPs https://arxiv.org/abs/2105.08050
2021 RVT Towards Robust Vision Transformer https://arxiv.org/abs/2105.07926
2021 DnC Divide and Contrast: Self-supervised Learning
from Uncurated Data
https://arxiv.org/abs/2105.08054
2021 PVT Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions https://arxiv.org/abs/2102.12122
2021 PiT Rethinking Spatial Dimensions of Vision
Transformers
https://arxiv.org/abs/2103.16302